Showing posts with label conditions for sentient life. Show all posts
Showing posts with label conditions for sentient life. Show all posts

Sunday, April 20, 2014

(Mostly) Water Worlds

Imagine a super Earth that is mostly covered in water. Landmasses are few and scattered. What would be the consequences for the development of an advanced civilization?

Landmass Size

For development of an advanced civilization on a super water world, I think it would have to be a water world where the landmasses are not miniscule. Tiny scattered islands would not give much evolutionary chances, or pressures, for life to leave the ocean (there would be but one ocean on a water world). What benefit would there be? There would not be enough territory for land creatures to have a go at it. There may be creatures that learn to live in the shallows, and there would probably be more shallow areas than areas above the ocean surface; and those creatures may venture at times on the land. Maybe some would evolve to use the land to lay eggs - protection from egg eaters. Some plant life that survive on the surface of the ocean could also end up being OK on the tiny islands - being small land masses, on a very large water world would mean waves, storms, rain, as well as a humid atmosphere (we suspect super Earths would have thick atmospheres, and may be steamy or humid). This atmosphere would potentially offer more protection from ultra violet radiation than our atmosphere, making it easier for surface water plants to survive periods on the land masses.

But for larger land masses - large enough to support evolution of land creatures - that is a different tale. Large land masses allow room for life to evolve permanent settlers, for a complex enough, and large enough, ecosystem to allow for permanent land adaptation. Once life evolves species to permanent adapt to land, they can then spread to smaller, relatively nearby, landmasses.

Landmass Separations

On a super Earth, even large land masses, close to Earth continents in size, would be separated by vast stretches of water - a vastness that would make our oceans seem like large lakes by comparison.

On Earth, landmasses separated for long periods show us divergent evolutionary paths. Each continent on a super Earth water world would have little biological communication with each other, at least for creatures that become fully established as land creatures. Semi-aquatic could eventually find their way to other landmasses, but those that evolve to be on land - each landmass would be a separate evolutionary laboratory.
An Aside

I have to stop for a moment here. While the evidence for evolution is overwhelming, it still has its holes, and thus it needs refining. But I also think that the Grand Designer of the universe has created the marvelous, awe inspiring, supremely elegant and beautiful natural laws that brought the universe to life. It's a sonnet, controlled by some regulations and restrictions, but allowing for so much expression within. For me, evolution is not anti-spiritual, but is evidence of a grand design, a remarkable design, that allows for such an incredible range of life in this universe. Many, many different songs of life, a Universe Symphony. And so, as science uncovers more truths of the universe, we will learn more of this Grand Design, and discover more of the beauty, the genius, the elegance of the Universe. This outlook informs my speculations. See "Introduction" for more on this blog's focus.
Evolutionary Laboratories

While the landmass lifeforms will have evolved from the same one ocean, the greatly separated major landmasses would allow for different evolutionary paths. Convergent evolution, where organisms not closely related (not monophyletic) independently evolve similar traits, would come into play, of course: lifeforms evolving similar adaptations because the occupy similar niches such as climbing trees, hunting at night, and eating burrowing insectoids. They would be on the same planet, within that planet's gravity well, magnetic field, and living through the planet's seasons as it orbits its star. But there will be variations in how each landmass' lifeforms specifically adapt. Natural disasters may affect one landmass while another is barely even touched by it - for instance, a supervolcano exploding on one landmass, but as the planet is a super Earth, and the landmasses greatly separated, the devastating effects of a supervolcano on this super Earth would not have the same global impact as a supervolcano explosion on Earth would. A meteor strike on a super water world would have less of a global impact, for the same size meteor, as that strike would on the Earth. A tsunami from an ocean strike would have much further to go, on a world with higher gravity, dissipating more of the tsunami's energy by the time it strikes a landmass than it would on the Earth. Not that there still would not be global effects from major disasters, it is just that with vast distances between at least some of the landmasses the effects for some areas of the planet would be much reduced. This would allow for very different end results. 

Dinosaurs Kingdoms and Mammal Kingdoms?   

If the Earth was a super water world, where it had, say, the same overall landmasses but with much, much greater distances between some of them due to the vastness of the global ocean, one result is that one continent would still have dinosaurs evolving, while another continent would have the dinosaurs wiped out, and the mammals evolving. Would this result in a sentient warm-blooded dinosaur race (probably feathered) on one continent, and sentient warm-blooded furry mammal race on another continent - intelligent descendants of the dinosaurs ruling one continent while intelligent humans ruling another? If the dinosaurs were not wiped out, could they have continued evolving, surviving the changing Earth to become sentient? Birds are the descendants of dinosaurs. Some birds, like crows, have brains twice the size needed for control of their bodies - they are much smarter than the other birds. Some even make tools (Caledonia crows can take a twig, strip it, and then work it until it has a hook at one end so that it can use it to hook insects burrowed in holes). If the dinosaurs were not wiped out by natural disaster(s) (some think more than one disaster ended their reign), could some have evolved to human level intelligence? 

What a world that would be. One day, an explorer from the dinosaur kingdom coming across the human kingdom, or vice versa.

Exploration

Which leads to my next speculation for this long post. For a world where continents are separated by distances many times what our continents are separated by, what would that mean for exploration? A sentient being is probably a curious one, and with a need to do some exploring, expanding territory. 

But as we see from our past, a large ocean is perilous to traverse. Many of our ancestors still did - we are finding that they traveled more, and farther, than we first thought. But it was perilous, and many resisted. For a continent that had only a few islands nearby and then nothing else, many early ships would leave to either never return or to return with no sightings of land. This would hold true for centuries as their sailing technology would not be enough to cover the incredible distances needed to get to another continent. The pressure to develop this technology would not be great - there is just no evidence for them, no tales of far off countries - just the known boundaries of their continent, the small islands off the coast, and that is it. The known world. The center of the world, and of the universe, as known to them. 

This separation, this loneliness, would allow the separated sentient beings on the separated continents to progress on their own, focusing on their known world, their center of the world. Until one day at least one progresses to the point where they can begin to think of exploring the universe. As knowledge increases, as they being to realize their world is a giant sphere, they may again wonder if some continent lies far, far away, just like we use to wonder if sentient life existed on Mars, or the Moon. Scientific exploration leads to technology that finally enables them to send a probe around the planet, or a long range probe to cross the seas (though a planet orbiting probe is the much more efficient means), and they spot it - another continent. 

Contact

And now the final speculations for this long post What myriad of ways that could play out? A civilization more advanced but for some reason didn't launch an orbiting probe (their culture focused more inward for whatever reasons - political,  theological, or distracted by a more harsh environment and needing to spend more energies there). Or a civilization less advanced. People similar in body form, but still different enough: humanoid but with tails, or humanoid but much smaller. Or more aggressive. Or not humanoid at all. The first contact hidden by the government of the country that sent the probe because of the differences - delaying actual contact. Or used by the government to rally their dissafected people against a perceived enemy?  Or this other land thought of as being heaven, or hell, or .... So very many different ways that first contact could play out.

Wednesday, September 5, 2012

Very Elliptical Orbits and Possible Life


As Spock Would Say?

From time to time I read about how planets in very elliptical orbits, orbits which take the planet in and out of the star's habitable zone, will probably not harbor life. Just too extreme. Of course if such a planet can support life, it would be, as that saying by Mr. Spock goes "it's life, Jim, but not as we know it." (Yes, I know that the line was not spoken by Spock in the series, but only in The Firms' song "Star Trekkin.'") But wait a minute. In pondering the report mentioned in the Creatures Frozen for 32,000 Years Still Alive post below maybe we should revisit those assumptions.

Or Not

Bacteria have been found buried deep in solid rock - bacteria with very slow metabolic states and are probably thousands of years old. Penn State scientists discovered in Kalaallit Nunaat (Greenland) dormant ultra-small bacteria (Chryseobacterium greenlandensis) trapped 2 miles deep in 120,000 year old ice core samples. If Earth creatures can reanimate after being frozen for tens of thousands of years, if other Earth creatures can last for hundreds of thousands of years, or even millions, then 1) life can be possible in very elliptical orbits and 2) it still could be life as we know it. We have many example of extreme life on Earth, living under conditions scientists not long ago said were not able to support life: from deep in antarctic ice, to miles below the surface of the Earth, to boiling hot springs, to volcanic vents on the sunless depths of the ocean floor, to acidic mine drainage, to the stratosphere -- life is everywhere on this planet, and in many, many forms.

Kol-Ut-Shan, as Spock Would More Likely Say

So, is it truly implausible that life can evolve on planets that orbit in and out of the habitable zone? Evolution may possibly take longer, but the most common star, the red dwarf, develop very slowly, lasting up to hundreds of billions of years. Plenty of time for life to evolve and in its own fashion thrive. Most of the time we put a limit on where life can exist on the Earth, we later find we are wrong.

Maybe we should embrace the Star Trek Vulcan philosophy of IDIC: Infinite Diversity from Infinite Combinations (Kol-Ut-Shan according to an episode of ST: Voyager). Though if life has universal laws (like physics and chemistry, on which biology depends), I am not sure about the Infinite part. Natural laws do have some limits, boundaries, ranges. But  even so, the range of diversity that can arise is still vast. Maybe it should have been ADAC: Astronomical Diversity from Astronomical Combinations. Or IDAC: Incredible Diversity from Astronomical Combinations. Of course, it is a trivial difference to be concerned over.
 
What matters is that there is an incredible array of life on this planet. Especially if we not only consider all the varied environments life can be found now on Earth, but all the varieties of life that have existed in all the varied Earth environments (some radically different) in the past as well. An incredible, astronomical diversity. 


Reference:

Coghlan, Andy. "'Resurrection Bug' Revived after 120,000 Years." Life. New Scientist. 15 June 2009. Web. 30 July 2009. <http://www.newscientist.com/article/dn17305-resurrection-bug-revived-after-120000-years.html>

Helmuth, Laura. "Top Ten Places Where Life Shouldn't Exist... But Does." Science & Nature. Smithsonian Magazine. 13 October 2009. Web. 5 September 2012. <http://www.smithsonianmag.com/science-nature/Top-Ten-Places-Where-Life-Shouldnt-Exist-But-Does.html#ixzz25e81Ip2i

"IDIC" Memory Alpha, The Star Trek Wiki. n.d. Web. 5 September 2012. <http://en.memory-alpha.org/wiki/IDIC>

"Novel bacterial species found trapped in Greenland's ice." Penn State Live. Penn State University. 3 June 2008. Web. 30 July 2009. <http://live.psu.edu/story/31052>

Monday, August 24, 2009

The Future for Some Habitable Moons

Exchanging Rings?

I was watching BBC's 1999 miniseries The Planets (shown on the Science channel) recently; they were showing several episodes in a row.

In one episode they discussed how Saturn's rings will, eventually, vanish. But that the moon of another outer planet, Neptune, would break up from tidal forces as it slowly spirals in toward the planet, creating another planet with rings rivaling that of Saturn's lost rings. We would swap one ringed planet for another.

Yes, Neptune already has a ring system, but it is very dark - being comprised mostly of rocky debris while Saturn's bright rings are comprised mostly of ice. Neptune's moons are composed of rock and ice - a break up of, say Triton (one of three moons in the solar system with an atmosphere), would create a ring of ice around the planet, giving it a shimmering, shining ring system.

Spiraling Moons

This got me to thinking about the habitable moon discussions. Tidal forces are what help heat the moons (if Europa has liquid water under its icy surface, for instance, it will be the result of tidal forces). The very tidal forces that would allow for the possibility of life, which would allow for a moon to be habitable, may also signal its early demise - if the moon is slowly spiraling in.

So, for some habitable moons, their lifespans may be shorter than those of habitable planets. Which has a bearing on the rise of high order sentient life. High order sentient life probably needs a very long time to arise. Imagine being an alien race finally creating technology and exploring their solar system, only to find that their world will die long before their sun will.


Of course the flip side of the coin is shown by our moon. The Moon is slowly spiraling away from the Earth (at 3.8 centimeters, or about 2.5 inches, per year). However, while in 500 million years or so there won't be any full eclipses anymore, we won't lose the moon. Eventually the Moon and the Earth will become gravitationally locked together. At some point the Earth and Moon will become locked - the same side of the Earth will always face the same side of the moon. When that happens the Moon will quit spiraling away from us.

Why? It has to do with the fact that the Earth has large oceans. Right now the Earth rotates faster than the Moon revolves around it. The tidal bulge created by the Moon's gravitational pull moves ahead and actually forces the Moon to speed up a tiny bit. This causes its orbit to get larger. When the Earth and Moon are locked, the tidal bulge won't move faster than the Moon. High tide will be permanent in some areas, and low tide permanent in others.

image credit: digitalblasphemy.com
"Thetis Moon" © DigitalBlasphemy.com
I still believe that we may find more habitable moons than habitable planets. But that some moons may spiral into toward their planet billions of years before their system's sun(s) die, will be one reason why it may be harder for high order sentient life to arise on some moons.

References

Cain, Fraser. "Ep. 17: Where Does the Moon Come From?" Astronomy Cast. 1 Jan. 2007. Web. 24 Aug. 2009. <http://www.astronomycast.com/solar-system/episode-17-where-does-the-moon-come-from/>

Mihos, Chris. "Neptune's Moons." Journey Through the Galaxy. Astronomy Dept. Case Western Reserve University. 13 Sept. 2006. Web. 24 Aug. 2009. <http://burro.astr.cwru.edu/stu/neptune_moons.html>

Scharringhausen, Britt. "Is the Moon moving away from the Earth? When was this discovered?" Curious About Astronomy: Ask an Astronomer. Cornell University. 21 nov. 2002. Web. 24 Aug. 2009. <http://curious.astro.cornell.edu/question.php?number=124>

Wednesday, August 27, 2008

Biological Singularity?

If there is a "Technological Singularity" where computers "evolve" in complexity and capability that one day they become self-aware, is there a "Biological Singularity" where organic compounds evolved in complexity and capability that one day they became self-aware, became Life?

In a previous post, Amoebic Intelligence, it was reported that amoebas were showing rudimentary intelligence, sentience. How far down does this go? Are viruses alive? Do they have rudimentary intelligence, or are they purely organic compounds following blindly, without sentience, without intelligence, the rules of chemical reactions? A crystal grows, and is, to an extent, self organizing. But not alive. So some argue a virus is not alive either. But it does raise the question, at what point does organic chemistry become complicated enough that sentience, even the most rudimentary level, arises?

Why is this question important? The answer may show that intelligence is a logical outcome of life, and thus, intelligence may be common among alien life (whether high level sentient intelligence is common is another matter).

Reference:

Schewe, Phillip F. and Jason S. Bardi. "Amoebas Anticipate Climate Change." The American Institute of Physics Bulletin of Physics News. Number 852. 3 Jan. 2008 . Web. 3 Jan. 2008. <www.aip.org/pnu>.


Saturday, August 23, 2008

Size Does Matter for Life? Did it Matter for the Dinosaurs?

Vishnu or Shiva?

Several articles this year discuss the role that gas giants (like Jupiter and Saturn) play in the rise and evolution of life on Earth, and how this may apply to other solar systems.

On one hand, gas giants clear out a lot of solar system debris early in a solar system's history, sweeping up many asteroids. This is, of course, because of the massive gravitational pull a gas giant has. In this manner, Jupiter and Saturn, but especially Jupiter, act as body guards for the Earth. George Musser, in his article, "Jovian Protector" in the September 2008 issue of Scientific American, reports that two researchers, Jonathan Horner and Barrie Jones of the Open University in England, suggest that if Jupiter was 80% smaller the Earth would've had 400% more asteroid strikes. Making it much more difficult for intelligent life to have evolved, since intelligence evolves slowly as discussed in my 25 November 2007 post, "Sentient Life:"
It seems the more complex the sentient mind, the slower it evolves. Apparently this is because the genes in the complex mind code for proteins that have complex interaction with other molecules in the body: "change a gene too much and it will be unable to continue its existing functions" (Barone, Par. 2). Thus, the more a brain evolves, the slower its evolution becomes. Though some postulate that the recent information revolution, with its explosion of information and rapid technological change may add extra evolutionary pressure on our brains.
However, on the other hand gas giants also fling asteroids into the inner portion of their solar system. Horner and Jones state that a much smaller Jupiter (even smaller than 80%) would have flung fewer asteroids toward the inner solar system.

Another factor to consider is that despite Jupiter's great size, it is still small compared to the sun and to the diameter of its orbit. If it is a shield, it is a moving shield - most of the time it is not between us and an incoming asteroid (likewise, most of the time it will not be deflecting asteroids toward us).

Jupiter, Ice Ages, and the Dinosaurs

What is left unanswered is which wins out? Did Jupiter clear out more asteroids than it flung in toward us, or did it fling more toward us than it cleared out? If Jupiter was smaller, would Earth have actually been more protected, and, as the author of the Scientific American article wonders, would, then, the dinosaurs still be alive?


Some scientists feel that a change in global climate unrelated to the meteor strike was already working to kill off the dinosaurs - the meteor strike just greatly sped up the process. Would the dinosaurs have survived the climate changes? That is, would the dinosaurs, if they were not finished off by the meteor, had a chance to survive the ice ages?

Fewer meteor collisions could have given them just enough time that some could evolved enough to adapt to changing weather conditions.

Changing weather is not an overnight catastrophe like a large meteor. Especially if the dinosaur species that began to develop higher sentience was a smaller creature - the ice ages killed off many of the incredibly large mammals due largely to the fact that large animals need a lot more food to survive than smaller ones. With food becoming scarce, animals that need to constantly eat, or eat large volumes of food, found it increasing harder to survive. A smaller dinosaur, especially an omnivorous one (which can get food from a wider range of sources than a strict carnivore or herbivore), would have a chance to survive. This is one of the reasons why humans survived the last ice ages when many other species did not - in addition to their evolving intelligence, they were smaller, and not strict carnivores.

Also, the death of large predators would also make life easier for the smaller evolving omnivore; after the weather improves the smaller creature can now be much more free to multiply and command the land. Because of the ice ages prehistoric humans no longer had to contend with saber tooth tigers, giant cave bears, and other huge, powerful predators.

And so, in this scenario of fewer meteor strikes, the dinosaurs may very well have developed an intelligent, sentient mind before the mammals (and, thus, before humans) having such a head start (no pun intended - well, not consciously).

Does Orbital Distance Matter?

However, as mentioned earlier, gas giants like Jupiter also sweep up many asteroids - asteroids that otherwise may have struck the Earth. Would having two or three Jupiter sized - or larger - gas giants in the outer solar system protect the Earth more? Or if Jupiter was larger would it have cleared away even more meteors, or would it have flung even more of them toward the Earth?

If Jupiter was in Mercury's orbit, would it fling less meteors toward the Earth and would that counter the fact that it is not able to sweep away as many meteors? Though it could end up sweeping away more of the meteors and comets that have elliptical orbits that bring them close to the Sun - as they come close to the Sun they would run the risk of being diverted in toward the Sun by Jupiter or being drawn into Jupiter itself.

If Jupiter was much further out, say in the orbit of Neptune, would it be too far away to sweep away meteors as well as be less likely to fling one toward the Earth? In a configuration where more meteors strike the inner terrestrial planet, could it having a very large moon help counter this increase? Are there even better solar system configurations, then, than ours for life to form and evolve in? If there are many configurations which can allow for life to form and evolve in, does this mean that life is not rare in the Universe?

These are questions that the exoplanetary science will help answer.


Notes:

Comets are made of ice, rock, and organic compounds. They can be as large as several miles in diameter.

Asteroids are generally made of rock with some containing metal (usually nickel and iron). They can be as small as boulders or the size of mountains (hundreds of miles in diameter).



References:

Barone, Jennifer. "Not So Fast, Einstein." Data. Discover. October 2007. 12. Print.

"Frequently Asked Questions." Near Earth Object Program. NASA/JPL. 23 Aug. 2008. Web. 23 Aug. 2008. <http://neo.jpl.nasa.gov/faq/>

Saturday, August 16, 2008

Robot Aliens, The Tecnological Singularity, and Where did I leave my Borg party body?

In this month's Popular Science is an interesting article "Could Robot Aliens Exist?" The question is posed to the NASA astrophysicist Steven Dick, chief historian for NASA and astrobiology and postbiological universe specialist.

Mr Stevens postulates that there is a 50/50 chance that robotic, or postbiological, sentient aliens do exist. On Earth we have supercomputers that are faster than human brains. In a few decades, some scientists predict, the Technological Singularity event will be reached where computers will not only achieve sentience, but will be smarter than their human creators (Skynet anyone?).

Thus, some feel that it may not be long (just a few decades) before the once science fiction concept of downloading one's brain into a computer becomes an actuality. There are limits to biological systems (which could be thought of as biological machines) that advanced robots could overcome. Biological sentient races may want to evolve themselves into postbiological beings - robots. There will be people vying for this - a chance to live forever (or at least a very long time). As the robotic body gets too worn out to be effectively repaired, one just uploads to a new (and maybe improved) model. Or one could switch bodies as situations warrant:
"See you later dear!"

"Jane, did you forget?

"What?"

"You're still in your party body. You're working on the space platform today."

"Oh! Right! I need to download to my astrobody! I guess I just love being in my party body too much; I overlooked -"

"On purpose."

"- that I was still in it."

"Yeah, yeah, we know where your "heart" really is!"

Jane, laughing, goes to her closet to switch bodies...
In a few decades, shall some of us become Cylons?

Speaking of working on space platforms, the case can be made for robots to explore inhabited planets since, as mentioned in my 11 Aug. 2008 post, Blog in Space III: The Beatles' "Across the Universe", robots make a very pragmatic choice for traveling long interstellar distances (if no faster than light speed travel exists), and for exploring planets that may be extremely hostile to our biological systems due to attacks by alien viruses and predators, as well as surviving a n alien atmosphere hostile to human life. They don't need space suits, or to carry large stores of food. Thus, it is probably easier and safer for sentient robots to explore alien planets.

Some argue, though, that are advantages to an organic brain that trumps speed (intuitive leaps, imaginative creativity). However, a few days ago (13 Aug. 2008) it was reported by the BBC News that researchers had created a robot that was largely controlled by a group of 300,000 living rat brain cells. It is a project to study how memory is laid down as the robot learns how to navigate around objects. Maybe the new human will be a blend of biological and postbiological systems. In a few decades, maybe just call us the Borg...


References:

"Could Robot Aliens Exist?" Popular Science. Sept. 2008: 83. Print.

Kurzweil, Ray. The Singularity Is Near: When Humans Transcend Biology. New York: Penguin, 2006. Print.

"Rat-brain robot aids memory study." BBC News. 13 Aug. 2008. Web 16 Aug. 2008. <http://news.bbc.co.uk/2/hi/technology/7559150.stm>.

Vinge, Vernor. "The Coming Technological Singularity: How to Survive in the Post-Human Era." San Diego State University. 1993. Web. 16 Aug. 2008. <http://www-rohan.sdsu.edu/faculty/vinge/misc/singularity.html>.

Sunday, February 17, 2008

Hypervelocity Stars (updated)


© Ruth Bazinet/Harvard-Smithsonian
Center for Astrophysics
Hypervelocity stars are stars that are moving, on average, around 7x than the average for, well, your average star. OK, in other words the average velocity for most stars is around 223,694 mph, which seems plenty fast but your average hypervelocity star moves at 1,615,068 mph (1.6 million mph)!

What causes these stars to become dragsters? A binary star system tangling with a black hole. If the conditions are right, one of the binary will be captured by the black hole, while the other star gets flung away at great velocity.

Not many of these hypervelocity stars have been found so far. One recent discovery, HE 0437-5439, has not been ejected from the Milky Way, but from the Large Magellanic Cloud (LMC), a small neighbor galaxy. This star is strong indirect proof of a black hole somewhere in the LMC.

What would that mean for any life on a habitable planet around such a star? They would see constellations change about 7 times faster than we do and they would experience a slight relativistic time dilation (1.5 minutes per year).

But most importantly, they would either pass by other stars several times more often than our own Sun, or be flung out into intergalactic space - far from any other star. The latter would be lonely civilizations indeed, unless they could somehow develop faster than light speeds, as it may take a few billion years for sentient life to arise on such a planet; after a few billion years they would be thousands of light years out into intergalactic space by the time they developed a technological civilization. They would be even further out if they had the unfortunate luck of being ejected from the galaxy, or the LMC, in the opposite direction of the galaxy's trajectory (the Local Group of galaxies, of which the Milky Way and the LMC are members of, is moving at 1.34 million miles per hour in the direction of the constellation Hydra) 1.

There is an additional effect of being flung out into intergalactic space: being so far from other stars would mean the chances of being effected by a nearby supernova would be nearly zero. As mentioned in a previous post, for the Earth, a supernova 30 light years or closer would be quite devastating for life - for other planets, the distance could be greater, depending upon how thick their protective atmospheres are (to show you how protective our atmosphere is, for astronauts outside the Earth's atmosphere, a supernova 3,000 light years away could be deadly). Some scientist conjecture that maybe a supernova was involved in past extinction events on Earth.

In addition, the solar system would not be affected by galactic disturbances (compression waves, for instance). Thus, the system might be more "boring" than our own, and thus allow sentient life to form more rapidly. HE 0437-5439 is a young star, only 35 million years old, so if there are any planets around it (and it is a big if), and if one of those planets is habitable and in the habitable zone, most likely hasn't arisen yet. But if it does, and it evolves into a sentient race, it will be a very isolated race.

Would they feel themselves blessed by being alone in the universe? Will it appear, to them, that the entire universe revolves around them - even the galaxies? Though if their parent galaxy is racing away from them, what would the make of it? Would they instead feel abandoned? Any thing they create would be lost when their star dies - there would be no one else to ever come along to explore their world. Would this affect how they lived? And if so, how?

Of course, if faster than light travel is somehow possible, by some "trick" (like worm holes), maybe they would be more pressured to discover it than would other, galactic, civilizations; and solve their isolation that way.

Another example of counsel given by Hamlet: "There are more things in heaven and earth, Horatio, Than are dreamt of in your philosophy" (Hamlet Act 1, scene 5, 159–167). Speculating on on possible extrasolar (alien) biological, psychological, societal, technological, and theological realities stretches the dreams of any of our philosophies here on Earth!

Notes:

1. A light year is the distance light travels in mph: 186,000 miles/second * 60 seconds/minute * 60 minutes/hour = 669,600,000 mph.

The distance light travels in a year: 186,000 miles/second * 60 seconds/minute * 60 minutes/hour * 24 hours/day * 365 days/year = 5,865,696,000,000 miles/year.

A hypervelocity star traveling at 1,615,000 mph would be traveling at 0.04145 light years per year: 1,615,000 mph/669,600,000 mph = 0.0024119 or 0.24119 % the speed of light.

Thus, the hypervelocity star would cover 0.24119% of
5,865,696,000,000 miles/year; it would take the star 414.611 years to cover a light year.

For a hypervelocity star leaving a galaxy, in 4 billion years it could be (depending upon relative velocity of it with its parent galaxy) 9,647,597.386 light years away from its parent galaxy! If sentient life takes as long to develop on a planet around such a star as it did on Earth (4.5 billion years), it would be 10,853,547.06 light years away.



References:

Kraan-Korteweg, Renée C. & Ofer Lahav. "Galaxies Behind The Milky Way."
Scientific America. October 1998.

Przybilla, N. et al. "LMC origin of the hyper-velocity star HE 0437-5439. Beyond the supermassive black hole paradigm." Astrophysical Journal Letters. Submitted on 29 Jan 2008. 17 Feb 2008. <http://arxiv.org/abs/0801.4456>.


"What is a Light Year?"
How Stuff Works. 17 February 2008. < http://www.howstuffworks.com/question94.htm>.

Saturday, January 19, 2008

Amoebic Intelligence

I promise we will return to preliminary speculative discussions of alien technology soon but this topic in Physics News caught my eye due to previous contemplations on the importance of intelligence to survival - if intelligence is a natural and expected result of evolution, if it is a natural tendency, a natural law in our Universal Biology then the likelihood of other intelligent advanced beings existing in the universe increases.

"Amoebas Anticipate Climate Change," the Physics News Update reports January 3. In it, there is indication of a extremely rudimentary intelligence in these single celled creatures. For the presence of intelligence, even a very rudimentary one, to exist in the amoeba may indicate that intelligence is common - and that there is a strong evolutionary pressure, if you will, for it to arise and evolve.

Which also shows that Drake's original calculation for fi (percent of habited planets where intelligent life evolves) in his Drake Equation may be too low (he calculated 1%).
PHYSICS NEWS UPDATE
The American Institute of Physics Bulletin of Physics News
Number 852 January 3, 2008 www.aip.org/pnu
by Phillip F. Schewe and Jason S. Bardi

AMOEBAS ANTICIPATE CLIMATE CHANGE A new experiment shows that amoebas will slow their motion in synch with periodic adverse changes in their environment, and will, as if in anticipation, even slow down when the adverse condition is not delivered. A team of scientists from Hokkaido University and the ATR Wave Engineering Laboratories in Japan cultured the single-celled slime mold Physarum polycephalum (a member of the amoeba clan) in a bed of oat flakes on agar. Every ten minutes the air was made slightly cooler and drier, which had the effect of slowing the movement of the amoebas down a narrow lane. Then more favorable air would be restored and the motion continued as before. After several cycles, the amoebas slowed even when the adverse conditions did not materialize. Later still, when the organisms have been tricked into anticipating impending climate change several times, they refrain from slowing without an actual change in conditions. One of the researchers, Toshiyuki Nakagaki from Hokkaido (nakagaki@es.hokudai.ac.jp), cautions that amoebas do not have a brain and that this is not example of classic *Pavlovian* conditioned response behavior. Nevertheless, it might represent more evidence for a primitive sensitivity or *intelligence* based on the dynamic behavior of the tubular structures deployed by the amoeba. (Saigusa et al., Physical Review Letters, 11 January 2008; journalists can obtain the article from www.aip.org/physnews/select)
The above quoted article "is provided free of charge as a way of broadly disseminating information about physics and physicists. For that reason, you are free to post it, if you like, where others can read it, providing only that you credit AIP."

Saturday, January 5, 2008

Methuselah - 13 Billion Yr Old Planet (Garden of Eden?)

In 2003, astronomers using the Hubble Space Telescope discovered something amazing deep in the M4 globular cluster 7,200 light years away - something that shouldn't be: a planet, 2.5 times the size of Jupiter, orbiting 23 AUs from a pulsar (a rotating, pulsating neutron star), PSR B1620-26. The primary star, the pulsar, has a companion white dwarf orbiting approx 1 AU out.

According to current theories, planets could not form in the early universe (1) - for one thing, early stellar nurseries shouldn't have enough heavy elements to create stars with planets. But somehow at least one planet was formed in the young universe - while the universe is 14 to 15 billion years old, this planet, dubbed Methuselah, is nearly 13 billion years old.

Imagine that - a planet almost as old as the universe itself. Could a civilization have arisen there? Or died out and rose again (that old of a planet, life would have time to restart several times)? And in the final years, moved out into the stars?

I can't help but think of old races often called "The Ancients" or similar such nomenclature in science fiction tales - very old races that seed the rest of the galaxy before ascending or mysteriously moving on to other galaxies, leaving this one behind.

And if life first began in this universe on such an old planet (or, more likely, a smaller sister planet), could that then be the real Garden of Eden, from which Adam and Eve where exiled from?

Of course, orbiting a pulsar is dangerous for life for two reasons: 1) a pulsar is a result of a supernova which tends to destroy worlds (strip away the atmospheres at the very least) and 2) pulsars give off extremely intense beams of radiation along the lines of its magnetic axis - if any planet is in the path of the beam of the rapidly spinning star, the radiation would be too intense for life to survive or form (2).

As we have seen in a previous post, Planets, planets everywhere, planets can reform around a pulsar - from the rocky debris of the original planets, blasted from the supernova explosion.

Scientists, however, do not feel that Methuselah is a "reconstituted" planet. One theory is that the planet (and maybe others too small to be detected by present means) was captured from a sideswipe with another younger system later on - a system that existed for 10 billion years before wandering too deep into the core of the globular cluster, where distances between star systems can sometimes be less than 1 light year.

Recall from an earlier post, An Aside - Are There Alien Worlds in Our Own Solar System?, there is some evidence that our own solar system has "adopted" objects from an alien solar system passing by in the distant past - possibly when it was still in an open globular cluster (scientists theorize that our sun was first formed in an open cluster).

In fact, the scientists feel that the white dwarf companion was also "adopted" by the primary neutron star. They theorize that the pulsar did have a dwarf companion at first, but when a yellow star system came too close, the gravitational tug-of-war kicked out the dwarf and the yellow star took its place, along with at least one of its planets. The new system then moved out from the core of the globular cluster - reducing any chances for further collisions.

In this new binary system, some of the mass from the yellow star got sucked into the pulsar, speeding up its rotation, giving it the incredible spin rate of 100 revolutions every second. After some millions of years, the yellow star became a red giant and then a white dwarf.

So it is quite possible that the Methuselah, and any other world(s) circling PSR B1620-26, were "adopted," right along with their sun. If so, could one of them developed life before being captured by the pulsar/dwarf system? Early planetary systems would most likely be made up of gaseous planets - there shouldn't be enough heavy elements for terrestrial planets to form. But then we didn't think any planets as old as Methuselah should exist either. Maybe, just maybe, a small terrestrial planet does exist along with Methuselah. And even if not, life is not necessarily restricted to terrestrial planets - life could begin and thrive on non-terrestrial planets (albeit, such life would not be life as we know it).

One problem such life would face is that being captured by the pulsar would prove to be quite the dramatic change. If they are lucky, the radiation beam from the pulsar would point far above the ecliptic, thus avoiding being bathed in intense radiation every 1/100th of a second; but even then, the difference in light (and heat) would be devastating as it is rather certain the planets' new orbits around the binary pair would be different than when they were just circling around their single parent star. But as we see on Earth, life, once formed, is tenacious and will find a way to survive, even during the occasional mass extinctions.

For intelligent life, depending upon their level of technological advancement, they could migrate to a sister world circling the new binary system, one that was now more hospitable than their home world. Otherwise, they would be forced to adapt to their new, darker, colder world. Or, if they were highly advanced at the time the collision was imminent, and finding themselves in a crowded neighborhood, could explore nearby systems and move to one that was safer -though it is doubtful any planetary system in the core of cluster would be safer, especially any system that was lingering in the core, and thus increased chances of itself colliding with another star system. No, more likely they would have to figure out how best to ride out the collision.

At first scientists thought planetary systems couldn't survive long in a cluster, especially a globular cluster - but increasing evidence is showing that sometimes this is not the case. Although, lingering too long in a cluster is still thought not the best environment for life; for one thing, a globular cluster has many stars in relatively close proximity - a supernova from a nearby star can have devastating effects for life on the planets of neighboring star systems and being in a globular cluster, chances for being near a supernova are rather high. For the Earth, a supernova 30 light years or closer would be quite devastating for life - for other planets, the distance could be greater, depending upon how thick their protective atmospheres are (to show you how protective our atmosphere is, for astronauts outside the Earth's atmosphere, a supernova 3,000 light years away could be deadly).

But, it is not impossible. That extrasolar system could have been one of the earliest gardens of life in the universe. 12.7 billion years ago the planetary system was formed. Our own system is "merely" 4.5 billion years. It is thought that the first 10 billion years Methuselah led a "normal" life around a normal sun like star. And if it was, was that life able to evolve to a space faring species? Are there descendants scattered about the Milky Way (or at least in that region of the Milky Way)?

Notes:

1. Early stars were poor in heavy elements, and thus could not form planets, but when they died, they produced heavy elements which then became part of new nebulae within which new stars were born - and with heavy elements now in the mix, allowing planets to finally be formed as well.

2. While pulsars are formed from massive stars, white dwarfs are formed from the average main sequence star - most stars in the galaxy will end their lives as white dwarves.


References:

Britt, Robert Roy. "Primeval Planet: Oldest Known World Conjures Prospect of Ancient Life." Science. SPACE.com. 10 July 2003. 6 January 2008. <http://www.space.com/scienceastronomy/oldest_planet_030710-1.html>

"Extrasolar Visions - 'Methuselah' PSR B1620-26 c." Extrasolar Planet Guide. 5 January 2008. <http://www.extrasolar.net/planettour.asp?PlanetID=30>

"Messier Object 4." The Messier Catalog. SEDS. 21 August 2007. 6 January 2008. <http://www.seds.org/Messier/M/m004.html>

Mukai, Koji and Eric Christian. "Destruction of the Earth by a Nearby Supernova." Ask an Astrophysicist. Imagine the Universe! 1 December 2005. 5 January 2008. <http://imagine.gsfc.nasa.gov/docs/ask_astro/answers/980521a.html>


"Oldest Planet Challenges Existing Theories."
This Week in Science. 11 July 2003. 5 January 2008. <http://www.twis.org/2003_07_11_science_news.html>

Richmond, Michael. "Will a Nearby Supernova Endanger Life on Earth?" 8 April 2005. 5 January 2008. <http://stupendous.rit.edu/richmond/answers/snrisks.txt>

Saturday, December 8, 2007

Life on Water Worlds

No, not the movie of the same name.

Some planets may very well be true water worlds - totally covered in water. Though some, like Gliese 581 C (a "super-earth" 50% larger than the Earth 20.5 light-years away) may have dense water - maybe a thin layer of liquid water on top of compressed water. What sort of life would arise there? Think about it - no dry land, or extremely rare dry land that is easily flooded by storms or tides. Life transitioning to land would not happen, at least not large roaming life which needs territory to grow and thrive on (digression: could high level stationary sentient life ever evolve, I wonder?).

On Earth, life developed limbs and walked out of the seas - large tracts of land allowed for evolution to proceed in that direction. On a planet covered with one giant ocean, that direction would be blocked, unless the poles were cold enough to keep up the continued production of ice floes - then there could be an evolutionary path for living on ice floes part or full-time. Otherwise, any evolutionary development of limbs would go in the direction of underwater ambulation. But how useful is underwater ambulation? As useful as fins on land? And so, over millenia, higher sentient life would evolve totally adapted to the oceans. I don't think they would have just fins - hard to build and use tools without some means of griping and manipulating the physical environment.

That is not to say intelligent life needs a means to physically manipulate the environment, but that the ability to manipulate the environment does allow for greater evolution and progress of the brain, or at least to make it much easier for it to happen.

Maybe on some water world planet, a species of sentient life has evolved that can not manipulate the environment, but they have survived for millenia and so have slowly evolved to be able to do high order abstract thinking - their art, culture, science, and theology would all be based on communication - their only tool left to them; they would manipulate the mental environment. Art would be, for those that communicate via sound, vocal music and oral literature. Science would be based largely on observation and mental experiments (of the kind that Einstein made famous, but that the Greeks did to an extent as well) since they could do little experimenting (some, probably, but not much). They would not less likely to physically explore space, as they would not be able to leave their planet (water is extremely heavy, especially compared to air, lifting a craft full of water out into space would be extremely difficult -albeit not impossible - to do. In addition, making space suits for exploration, especially that of dry surfaces, would be extremely problematic as well). Would they be more likely to become telepathic then? To astrally project themselves? Or is that too "newagey?"

For a large planet with several times greater gravity, a thick ocean may have "normal" water at the top, but definitely, for a thick ocean, water that would become denser quickly the deeper one went - water become plastic, or even solid. We have a slight inkling of that here on Earth - mountain climbers know the air gets thinner as they climb, it is a danger if ignored. For our water world aliens, something similar may be in play.

Depending upon their evolutionary track, if they evolved as deep sea creatures, rising up to the surface may be dangerous - especially if they can not work with tools to create devices to help them breath or deal with the pressure change. Even sea creatures on Earth have ranges - some that live closer to the surface can dive rather deep, but they don't live in the depths. Other deep living creatures tend to stay in the depths, only coming near or to the surface when they are sick or dying (like giant squid) - near the surface is not a friendly environment for them to linger in.

Another thought - would, after millenia, creatures evolve to be like our flying fish? Would the air be conquered there as it has long been here as well by flying creatures? They would have to be creatures that feel at home surrounded by oceans, who do not need land to survive. Probably most likely flying fish like creatures, though maybe one some planets, the flying fish make the evolutionary steps toward fish that fly more than they are fish, and develop lungs and end up spending their lives either floating on the surface (when resting, for instance) and flying.

There are some sea birds on Earth that can live far out at sea, and may spend much of their life out at sea. Such birds tend to glide or soar more than the powered flight. This is because they can take advantage of the wind deflected by waves, and or by ground effect which reduces drag.

Because of convergent evolution (where unrelated species tend to develop similar characteristics due to their sharing similar environments, and due to the fact that the same physical laws apply to all species in the same environment) we can make educated guesses that creatures on other planets will tend to try to be efficient in adapting to their environments just like Earth life. If deflected wind and the ground effect is still in effect on this alien water world, then flying creatures there will glide more than they would use powered flight since the latter uses more energy.

Would these fully pelagic sea bird like creatures be the ones to most likely to become tool makers? They would have, possibly, develop feet (webbed most likely), which could have an opposable digit to help them grip prey (like modern Earth birds) and which could eventually evolve to manipulate tools (as a previous blog entry has noted, some birds, crows most notably, are known to create and use tools, and may be as smart, or even smarter, than a chimpanzee).

Or would the creatures be more like flying fish, or half-bird/half-fish - able to live under water (maybe to nest and breed) as well as live on the water surface and fly over it (to more easily hunt for food - flying through air is faster than flying through water - less dense, less drag).

Though one drawback (to sentient beings) is that on a water planet it would be hard to work with metals - to melt, smelt, and other wise work with metal to create structures and devices that would allow them to eventually explore the stars. Mining ore would be more problematic as well. Water is heavier than air, more dense - it takes more energy to move through it, and probably more difficult to shore up tunnels (not only would they have the weight of the stone above, but the pressure of the water on top bearing down). Light has a harder time penetrating water than it does gaseous atmospheres (sound, however, could travel great distances under water). Working with electricity would be harder. Building telescopes to view the heavens would be harder (though maybe on a planet with rare land, a species that could tolerate the air for short periods could build telescopes on such land - or the avian species, which would have a higher ability to tolerate the air).

On a larger planet, covered with water, how would that affect territorial issues? Would such creatures tend to be more nomadic - especially if they never develop the ability to farm, there is no need to settle down and build cities. Are cities necessary for advancement? Do cities help speed up advancement of civilization, and if they do help (which it does seem like they did for humans), are they the only way? Could nomadic species find their own way to help quickly spur on advancements in civilization? Without natural barriers like mountains, oceans, ice fields, deserts, and large rivers are to humans, would their be less isolation between groups and thus a more "we are one" sort of sentiment develop? Or would groups still develop, some adapting to more colder regions, for instance? (but would this still, in the end, create fewer insulated, insular groups than is the case on Earth?) Would this create a species that would be less xenophobic?

What theology would exist for such creatures? For those on planets with rare land - would the inhospitable land be their version of hell? Or for deep dwelling sentient species, which can not bear being near the lower pressure regions in the upper regions of the sea, would the upper, more lighted, and more dynamic regions be more like hell and heaven more like the darker, heavier, and calmer pressured regions? Would they think all planets are ocean, and that heaven would be a calm ocean? They probably would have some tectonic activity - underwater volcanoes - as well as deep, dark trenches that could play roles in primitive theologies. And for the water bird sentient species, how would their primitive ancestors first think of the world, theologically (I suppose they would love the O.T. verses that describe God as a mother hen).

Two digressions:

1. Would a water world be less susceptible to extinction level events from meteor impacts (no dust to throw up into the air to create a long lasting year round winter that kills off the plant life, no cracking open part of the crust and letting out lava, etc)?

2. There is an article in DVICE.com about the Focus 21 France, a hovercraft prototype that would use the ground effect to achieve helicopter speeds. It would have to fly close to the water to take advantage of the ground effect (a height equal to twice the wingspan or less). I thought that maybe that is how water world sentient species would fly, at least for their earlier flights. Sort of like sub-orbital or low earth orbits for us.

References:

"Astronomers Find First Earth-like Planet in Habitable Zone." ESO. 25 April 2007. 9 December 2007. <http://www.eso.org/public/outreach/press-rel/pr-2007/pr-22-07.html>

White, Charlie. "Focus 21 France uses ground effect to zip above the waves" DVICE.com. 3 December 2007. 9 December 2007. <http://dvice.com/archives/2007/12/focus_21_france.php>

Friday, November 30, 2007

Sentience - A Natural Result?

Reports in The Ecologist and National Geographic reports that crows are carrying walnuts in their beaks to intersections, wait for the traffic light to turn red, drop the walnuts and after the cars run over the nuts, fly down and pick out the walnut meat. The National Geographic continues, stating that crows can make tools - and not just by accident. They create two different tools, depending upon the need. Apparently crows are as smart as chimpanzees, and studies seem to show that actually, crows are better at making tools than chimpanzees.

In addition, studies show dogs can map language. Great apes have been taught to communicate using sign language. We know that some animals can lie (recall, for instance, the article "Lemurs can be liars, if they think you want their food" in the May 2006 issue of Monitor on Psychology).

So, if planets are a natural consequence of the laws of physics (especially gravity) given a debris field, and life a natural consequence of the laws of physics and chemistry given liquid water, common basic organic molecules (found everywhere in space, from nebulae to comets), and an energy source, is sentient life a consequence of the laws of biology given a "boring" enough environment (see "Universal Biologies - Order from Chaos," and "Sentient Life" post)?

This is not to say that the universe is teeming with sentient life. While life is probably fairly common, most of it will be microbial type. Even with Earth's history, microbes account for most of the timeline for life. While catastrophic events can (and have, on the Earth) wipe out larger life forms, microbial forms are the most likely to survive.

Microbes can even survive being blasted into space; for example, if a large meteor hits a planet, large chunks of the planet can be launched into space. If one of those chunks hits another planet - life may be seeded there. Some feel that maybe that has happened between Mars and the Earth: some say life may have started on Mars first, then spread to the Earth (making Mars the garden of eden, and it did have a much wetter and warmer past), others say the reverse.

In addition, some environments are probably too harsh for large, complex life forms to evolve, or greatly slow down the evolutionary process (increasing the chances for a large enough catastrophe to set the evolutionary clock back).

But, life will find a way, and where there is life, there is hope. Thus, I believe sentient life is a natural potential - it will result if given a chance. But it won't be as common as, well, "common," or lower, life forms.

References:

Dingfelder, S. "Lemurs can be liars, if they think you want their food."
Monitor on Psychology. Vol 37, No. 5 (May 2006). 10. Can also be found at <http://www.apa.org/monitor/may06/lemurs.html> (as of 1 December 2007).

Owen, James. "Crows as Clever as Great Apes, Study Says."
National Geographic News. 9 December 2004. 1 December 2007. <http://news.nationalgeographic.com/news/2004/12/1209_041209_crows_apes.html>

Pickrell, John. "Crows Better at Tool Building Than Chimps, Study Says." National Geographic News. 23 April 2003. 1 December 2007. <http://news.nationalgeographic.com/news/2003/04/0423_030423_crowtools.html>

Monday, November 26, 2007

The Lost Regeneration

Most members of the animal kingdom can regenerate lost body parts at some (or all) of their life cycle. Mammals aren't one of those animals. Yet, scientists say the pathway (called the Wnt pathway) still exists, untapped, in mammalians.

Before we start speculating on alien sentient beings being able to routinely sprout new appendages (or like Jeebs, the hapless alien in MIB I and II, a new head), the question that first needs to be pondered is why have mammalians lost, or suppressed, this ability. On the surface, it seems like it would be evolutionary advantageous to retain this ability. Yet apparently it was also advantageous to lose it. Even among creatures that can regenerate, many of them can not do so when adults. This seems to indicate that there must be some problems with regeneration, especially with advanced life forms.

It is obvious we do not fully understand all the parameters regarding regeneration. However, the fact remains the Wnt pathway still exists, latently, but exists in at least some higher mammals. Thus, maybe it is not far-fetched to think there could be sentient aliens with at least some regenerative abilities. In addition, since Earth scientists are looking to restart this latent ability (and have had some success with adult frogs and chicken embryos), it is a distinct possibility that other alien sentient beings could work on restarting any latent regeneration they may have, and may be successful, either as medical procedure, or as a full time reacquired ability.

However, the more advanced the creature, the more there are limitations to the regeneration - that only makes sense. Simple structures are easier to rebuild, with less chance for mistakes. Not so for complex structures. Simple structures require less energy to rebuild than complex structures. Simple structures can rebuild faster. And finally, simple creatures tend to less centralized, the less centralized they are, the easier they can live without a part of themselves. Complex creatures tend to have rather centralized controls. Which brings us to an important point: there are structures that just can't be regenerated - such as a heart, or brain. How can a mammalian body naturally survive a missing heart even if it has the ability to regenerate? The body cannot survive long enough without a heart to give time enough for another heart to regenerate. Same with a brain - if the entire brain is dead or missing, the body cannot continue functioning long enough to allow for regeneration to complete (and even if a creature could regenerate a new head, ala Jeebs in MIB, how could it retain all its knowledge and memories?).

So, how would this affect culture, if we could routinely regenerate missing ears, noses, arms, or legs? For one, it would prolong life - for instance, amputations due to illness would be a temporary set back as the body regrows a healthy new appendage. Maybe more people would be greater risk takers, since the risk of death or permanent dismemberment or disfigurement is lowered (cosmetic surgery? Just remove the offending area, and let a new area grow back). But it also may make war or violence even more common place, since soldiers could be more easily resent back into battle (wars of attrition would take much longer). Of course repeated violence, repeated being torn apart and regrowing must have an affect on the brain, especially on the mental "adaptation" to such a "life." This would also affect culture.

The tougher question is how would it affect theology? What kind of theology would an alien race that had strong natural regenerative powers have?

Reference:

Casselman, Anne. "How to Grow a New Limb." Discover. October 2007. 17.

Sunday, November 25, 2007

Astronomers Say Moons Like Ours Are Uncommon - How Important is That?


The Uncommon Moon?
ScienceDaily (2007-11-22) -- The next time you take a moonlit stroll, or admire a full, bright-white moon looming in the night sky, you might count yourself lucky. New observations suggest that moons like Earth's -- that formed out of tremendous collisions -- are uncommon in the universe, arising at most in only five to ten percent of planetary systems.

<http://www.sciencedaily.com/releases/2007/11/071121184530.htm>

A Large 5 Percent

Though 5 to 10 percent of billions of planets is still a large number of planets with large moons (the size of the Moon is so large in comparison with the Earth, it leads some to speak of the Earth and the Moon as a Earth-Moon system, or a double planet).

However, this is an important issue when discussing, speculating, on alternative extrasolar biological, psychological, theological and societal realities that could exist.


Protector Moon


Firstly, how important is a large moon to the rise of, and sustainability of, life on a planet? Some say the moon, by its size, helps protect the Earth from large meteor bombardment. That is debatable. One could actually argue that the Earth protects the Moon more than the Moon protects the Earth since the Earth is larger than the Moon, and hence a bigger target and a larger "attractant" due to its larger gravity. Also, one could also argue that the Moon also increases the chances of meteors coming close, by adding its gravitational pull (think of the Earth and Moon as one system: add up the gravitational attraction it would have on passing meteors). Additionally, while the Moon is large, it is separated by 250,000 miles. The further away you hold a large shield from you, the less of a shield it becomes. When a meteor heads towards the Earth, the Moon would have to be pretty much in the direct path. Remember, the gravity pull of the Earth is several times larger than the Moon's - in a tug a war between the Earth and the Moon over a meteor, I would lay bets on the Earth "winning."

So while the Moon may give the Earth some protection, it may not give us as much as we think. But, it may have been enough. Let us say that without the Moon's protection, we would've experienced only one additional large meteor impact over the history of the planet to date. That one additional impact would easily change the course of sentient development on Earth - most likely delaying it by millions of years. And quite possibly changing the final face of the sentient creature that did eventually evolve.




Stabilizer Moon


Secondly, the size of the Moon does help keep the Earth from being too wobbly on its axis. This helps keep the seasons from being overly dramatic, which would make it more difficult for complex life to arise (though, I would argue, not impossible, but probably would prolong its rise, and thus delay the rise of sentient life).



Tidal Moon


Thirdly, the Moon affects the tides on Earth. A smaller moon would have a much smaller effect, and without a moon, there would be an even small effect (the Sun would have an effect, but only 1/3 of the effect the Moon presently has). The tides have profound effects on the Earth - mainly from erosion which helps mix chemicals, especially for the young Earth (when the Moon was closer and had a much more dramatic effect on the tides).

By the way, did you know that this tidal affect is also responsible for pushing the Moon slowly away from us? The Earth is rotating faster (essentially 29 times faster) than the Moon orbits around it. This causes the high tide to move ahead of the Moon. Recall that a high tide is a bulge in the oceans of the Earth facing the Moon (and directly opposite of it). This bulge has mass, and thus gravity; this added gravity tugs on the Moon - but since it is slightly ahead of the Moon (due to the Earth rotating faster than the Moon orbits) - this tiny gravitational tug pulls on the Moon, accelerating it. The result of this constant tug is that the Moon is slowly accelerating, and thus spiraling away from the Earth. As time passes, the Moon will get further and further away (though as it gets further away, the Moon will have lesser effect on the tides, which will thus mean that the resulting acceleration would decrease - but not to zero, the Moon will continue to spiral away). So for those that remark at how miraculous it is that the Moon is the same apparent size in the sky as the Sun need to recall that it hasn't always been that way, nor will it stay that way (plus the Moon isn't exactly the same apparent size as the Sun - but it is very close to it).

Another result of the above is that the energy for the acceleration of the Moon comes at a cost to the Earth: it's angular momentum decreases. The result for this is a lengthening day. Some calculate that billions of years ago the Earth spun much faster, and without any moon, a full day today would be around 8 hours instead of 24. This faster spinning Earth could also have much stronger winds as well. Life would look a bit different on a planet that had stronger winds, a shorter day, and smaller (but more frequent) tides.

Moon Cult(ure)

Not having a moon would definitely have affects on the culture and theology of a sentient race. Think of how strongly our Moon plays into many of our primitive theologies and myths. But another consideration is how the dark skies would affect the alien race as well: darker skies would mean more attention paid to the stars, but I think an even stronger effect is that having a large moon so close to us may have encouraged us as a species to think about exploring space sooner than we would've otherwise. Without a moon, there is nothing close enough to explore - for thousands of years, the planets were just thought of as wandering stars. The only other physical body was the moon. Without the Moon, it would be quite some time before we would realize there are other physical bodies besides the Earth. Without a moon, there would not be that stepping stone that we enjoy - going to the Moon is far easier than going to Mars. It gives us a chance to learn, experiment, and gain experience before heading off to more arduous and more difficult explorations.

Habitable Moons

One way a habitable planet may have some of the benefits of a large moon without having a moon orbiting it, is for the planet to be a large moon itself, and circling a gas giant. While that gas giant would surely attract more than its share of meteors, the orbiting moons are so very small compared to the parent planet, that most would probably miss the moons. Not all, of course, but no planet or moon is totally safe from meteors.

Let's say a planet about the size of the Earth was circling a planet the size of Jupiter. There would definitely be tides! And as we see with our own system, giant planets are like a solar system themselves: ringed by many captured moons. A habitable "moon" circling such a gas giant would have many near by physical neighbors to visit, explore, and colonize (or base stations on). Such a civilization may be more even encouraged to explore space than our own.

Gas Giant Theology

And what a god the gas giant would probably play in their primitive theologies! Would they look up in the sky filled, at times, completely by the gas giant, and think "is that heaven" or "is that hell?"

A Downside

Actually, that may be a downside - orbiting such a large planet would mean periods where the sun would be blocked by the gas giant, and day and night would both be dark (with part of that darkness without even any nighttime stars). Though the times the moon was in front of the gas giant (between the planet and the sun), the night would be ruled by the reflected sunlight off of the planet's cloud tops. Life has adapted to life above the arctic and antarctic circles here on Earth, with their months long days and months long nights, so life could easily adapt to orbiting a gas giant - though the orbiting moons may well have such fast orbiting periods (for one thing, as big as Jupiter is, it is still much smaller than the sun) that these periods of full light and full darkness would be short - Io orbits Jupiter in under two days, while Europa orbits in under 4 days. Leda and Himalia have the longest orbiting periods for a Jovian moon: just over 238 days for Leda and 250 for Himalia. Nights (where the sun is totally blocked by Jupiter) on those moons are probably around one or two months long (haven't worked out the exact numbers; the distance from Jupiter is a factor - a theoretical moon with an orbit of 250 days at 600,000 Km from Jupiter would have a longer day long nights than another moon with the same orbit, but at 11,480,000 Km away. The shadow of a planet is not a cylinder, but a cone, it gets more narrow the further out it goes).

The Phase Lock Waltz

Another thing to consider is if the orbiting moon is in phase lock with the planet - the rotation period the same as its orbital period, thus ensuring one side always facing the planet it is orbiting. Our Moon is like this - we only see one side of the Moon from Earth. Those living on the far side of the orbiting moon would never see the gas giant (well, if they stayed near the equator. If they moved some distance north or south of the equator, they would begin to see the top, or bottom, of the gas giant over the horizon). They would have a long day, followed by a long night. Those on the near side would always face the gas giant. Most of their daylight would be the reflected light off the gas giant, though as the moon orbited the planet, those living on the near side would get short glimpses of the sun - it wouldn't rise high in the sky, however. And then they would experience a starless night (though for the same reason they would get a short glimpse of the sun before or after night, they would get a short glimpse of a star filled night sky after or before night).

Phase Lock Theologies

It would be interesting to entertain what kind of mythologies would arise on the near side and on the far side of such a world. For the near side, a massive god before them, and a bright god that flirtatiously appears once during the short year, and a star filled sky half a year later. For the far side, the bright god of the day, but this looming god just over the horizon, peaking over. And then there's the many small moons whizzing by, some below, some above the world - what to make of them? Also, would such a world figure out sooner than we did that the universe doesn't orbit around the habited world?

More Downsides

Another downside to orbiting a gas giant could be the intense radiation belt surrounding the giant planet. Io, a moon of Jupiter, orbits closer to the Jupiter's cloud tops than the Moon orbits the Earth. Jupiter has massive radiation belts, and Io cuts through them, causing Io not only to be bathed in high levels of dangerous radiation, but creating huge currents of electricity that flow along Io's own magnetic field (bathing the moon in auroral glow).

Another downside is that such a "moon" would have greater tides. The closer it circles the gas giant, the greater the tidal forces. It is thought that the tidal energies experienced by the moons orbiting Jupiter and Saturn are keeping the cores of the moons heated. There is direct evidence of geological activity at work on many of the moons. For instance, it is thought that tidal forces are what are causing the volcanic activity on Io, and is one of the mechanisms thought to create liquid oceans under the frozen surface of Europa (also a moon of Jupiter).

References:

Comins, Neil F. "What if the Moon Didn't Exist?" The Universe in the Classroom. Astronomical Society of the Pacific. Winter 1996. 25 November 2007. <http://www.astrosociety.org/education/publications/tnl/33/33.html>

"Solar System." Jet Propulsion Lab. 25 November 2007. <http://www.jpl.nasa.gov/solar_system/>

University Of Arizona. "Astronomers Say Moons Like Ours Are Uncommon." ScienceDaily. 22 November 2007. 25 November 2007 <http://www.sciencedaily.com/releases/2007/11/071121184530.htm>

Sentient Evolution

It seems the more complex the sentient mind, the slower it evolves. Apparently this is because the genes in the complex mind code for proteins that have complex interaction with other molecules in the body: "change a gene too much and it will be unable to continue its existing functions" (Barone, Par. 2). Thus, the more a brain evolves, the slower its evolution becomes. Though some postulate that the recent information revolution, with its explosion of information and rapid technological change may add extra evolutionary pressure on our brains.

Anyway, this may be another reason why sentient life needs long "boring" (no planet-wide catastrophes) stretches of time to develop, and another reason for some to believe that while life itself may be fairly common in the universe, intelligent life may be somewhat (or even very) rare.

I disagree that it would necessarily be rare - hopefully, if a sentient species makes it to space travel, it will begin colonization and thereby increasing the likelihood of its survival as a species. Space colonization would have an evolutionary pressure on the beings - living in different gravity fields, electromagnetic fields, or atmospheric oxygen compositions for instance, may cause evolutionary changes. These changes wouldn't necessitate brain changes, but body adaptation changes (longer or shorter legs, larger lung capacities) which are not as complex changes to make as are changes in the brain.

Of course, that's skirting around the issue a bit - or cheating: a few sentient species spreading throughout the galaxy is not quite the same thing as sentience being a common result of habitable planets.

One result of this (as complexity of the brain increases, evolution of the brain slows) may be that the old, oft used Sci-Fi adage that advanced aliens would be to us as we are to ants may not hold as much water after all. Sure, a species that's been around for a billion years longer than we have, would have an evolutionary leg up on us, but to compare us to ants? Maybe a lemur would be a more appropriate comparison (by the way, there's an interesting article "Lemurs can be liars, if they think you want their food" in the May 2006 issue of Monitor on Psychology. Not so dumb, after all, these lemurs.). And how many billion year old civilizations would their be? And how many of them had continuously advancement (no dark ages, or no catastrophes that set them back)?

I've wondered sometimes if that would be another reason for extraterrestrials to come visit the Earth: a civilization that was a billion years old may very well have forgotten how they came to be - look at how just much we don't know just several thousands of years back in our own history. They may have great curiosity at how a primitive technological civilization begins. Think how intrigued we'd be if we found a planet of somewhat similar looking creatures were in their stone age era. We'd want to observe them, to maybe get some ideas to help us figure out our own past. Sure, there would be differences, but even the differences can teach us something. It is like studying the weather on Venus and Mars - both have extreme difference in weather, but the two planets are similar enough to Earth in other ways as to be very instructive; Venus and Mars are like two experiments that help us to set parameters, or to see certain forces more clearly on them that are also at work on Earth, but not as obviously.

Reference:

Barone, Jennifer. "Not So Fast, Einstein." Data. Discover. October 2007. 12. Print.

Dingfelder, S. "Lemurs can be liars, if they think you want their food." Monitor on Psychology. Vol 37, No. 5 (May 2006). 10. Print. Can also be found at <http://www.apa.org/monitor/may06/lemurs.html> (as of 25 November 2007).